01659000 NORTH BRANCH CHOPAWAMSIC CREEK NEAR INDEPENDENT HILL, VA LOCATION.--Lat 38°33'58", long 77°25'47", NAD83, Prince William County, Hydrologic unit 02070011, on left bank 1.0 mi upstream from Chopawamsic Creek, 4.8 mi south of Independent Hill, located downstream side of MCB-1, 10 ft. DRAINAGE AREA.--5.79 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1951 to June 1957, March 2000 to current year. GAGE.--Water stage recorder. Datum of gage is 230 ft above sea level, from topographic map. May 1951 to June 1957, at site 200 ft downstream at different datum. REMARKS.--Records fair except those for period Oct. 1 to Dec. 18, period with ice ice effect, Dec. 22 to Jan. 2, and period of no gage-height record, Mar. 28-30, which are poor. Previously unpublished sediment records for 2000 Water Year (March to September) included in this report. | | | DISCHAF | RGE, CUBIC | FEET PE | | WATER YE
Y MEAN VA | | R 2000 TO | SEPTEMBI | ER 2001 | | | |--|------------------------------------|------------------------------------|---|--|--|---|-----------------------------------|---|-----------------------------------|--|------------------------------------|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 2 | .96
.99 | 1.2
1.2 | 1.5
1.4 | e1.5
e1.5 | 4.0 | 3.5
3.3 | 10
7.3 | 1.9
1.8 | 3.3
5.8 | 2.5 | 3.1 | 1.5
1.1 | | 3
4
5 | .91
.81
.82 | 1.1
.97
1.4 | 1.5
1.6
1.7 | 1.5
1.5
1.6 | 3.0
2.8
4.4 | 3.1
3.5
7.2 | 5.7
5.1
4.5 | 1.6
1.5
1.4 | 3.6
2.6
5.2 | 2.0
1.7
1.4 | 1.5
1.3
1.1 | .87
.76
.66 | | 6
7
8
9 | .94
.73
.72
.74 | 1.2
1.3
1.3 | 1.7
1.9
1.8
1.9 | 1.7
1.7
2.4
2.8 | 5.2
3.9
3.3
3.2 | 5.9
4.4
3.6
3.4 | 4.5
4.8
4.3
4.4 | 1.1
1.0
1.1
1.0 | 3.4
3.1
2.8
2.2 | 1.1
.85
1.9
1.8 | 1.0
.83
.67 | .55
.51
.47 | | 10
11
12
13
14 | .95
.95
1.0
1.0 | 1.4
1.2
1.1
1.5 | 1.8
2.1
2.2
2.1
5.0 | 2.1
2.1
2.2
2.1
2.1 | 3.1
2.8
2.6
3.2
3.5 | 3.1
2.9
2.9
6.4
5.0 | 4.7
9.1
8.2
6.8
5.7 | 1.0
.92
.75
.68 | 1.8
1.6
1.5
2.1
3.3 | 1.2
.90
.64
.47 | 1.3
3.8
1.8
2.6
4.9 | .45
.46
.43
.37 | | 15
16 | .84 | 1.4 | 5.5
5.1 | 2.5 | 3.8
4.1 | 4.6
9.1 | 4.9
5.9 | .56 | 1.9
2.8 | .39 | 1.8 | .37 | | 17
18
19
20 | .92
1.1
1.6
1.5 | 1.4
1.2
1.3
1.5 | 20
7.7
4.5
3.6 | 2.2
2.2
16
32 | 12
6.3
4.5
4.1 | 5.6
4.2
3.4
3.1 | 6.0
4.8
3.9
3.6 | .63
.87
10
4.4 | 3.2
1.7
1.2
1.1 | .35
.43
.47
.44 | .98
.85
.74
.82 | .36
.35
.35
.48 | | 21
22
23
24
25 | 1.4
1.0
.91
.90 | 1.4
1.4
1.5
1.6
2.1 | 2.9
e2.5
e2.2
e2.0
e1.9 | 18
6.8
4.9
4.3
3.8 | 3.7
3.3
3.7
4.7
5.1 | 115
36
13
8.3
6.3 | 3.5
3.4
3.2
2.9
2.6 | 3.3
29
57
8.2
6.9 | 1.0
1.5
70
8.4
3.8 | .38
.34
.28
.25 | .66
.54
.48
.51 | .53
.55
.47
.91
2.2 | | 26
27
28
29
30
31 | 1.0
1.2
1.3
1.5
1.6 | 7.4
3.4
2.1
1.5
1.5 | e1.8
e1.7
e1.6
e1.6
e1.5 | 3.2
3.2
2.9
2.8
5.5
6.3 | 5.6
4.1
3.7
 | 5.2
4.4
e3.6
e20
e86
17 | 2.4
2.4
2.2
1.9
1.9 | 39
18
7.4
4.9
3.6
2.8 | 2.5
2.0
1.6
1.4
1.3 | 43
25
3.2
45
27
6.5 | .39
.37
.34
.29
.92 | 1.7
1.2
1.0
.88
.75 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 32.11
1.04
1.6
.72
.18 | 50.57
1.69
7.4
.97
.29 | 95.8
3.09
20
1.4
.53
.62 | 145.9
4.71
32
1.5
.81 | 117.1
4.18
12
2.6
.72
.75 | 403.0
13.0
115
2.9
2.25
2.59 | 140.6
4.69
10
1.9
.81 | 213.56
6.89
57
.56
1.19
1.37 | 147.7
4.92
70
1.0
.85 | 176.26
5.69
45
.25
.98
1.13 | 40.94
1.32
4.9
.29
.23 | 21.42
.71
2.2
.35
.12 | ## 01659000 NORTH BRANCH CHOPAWAMSIC CREEK NEAR INDEPENDENT HILL, VA--Continued ## STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1951 - 1957, 2000 - 2001, BY WATER YEAR (WY) | SUMMARY | Y STATIST | TCS | FOR 2 | 2000 CALE | NDAR YEAR | ਮੁ | OR 2001 W | ATER YEAR | | WATER Y | EARS 1951 | - 1957 | |---------|-----------|-------|-------|-----------|-----------|--------|-----------|-----------|------|---------|-----------|--------| | (WY) | 1955 | 1955 | 1956 | 1955 | 1954 | 1954 | 1955 | 1957 | 1954 | 1955 | 1954 | 1954 | | MIN | .30 | .51 | 1.90 | 1.05 | 3.06 | 6.71 | 3.69 | 1.33 | .58 | .19 | .18 | .036 | | (WY) | 1957 | 1953 | 1952 | 1953 | 1957 | 1953 | 1952 | 1953 | 1951 | 2001 | 1955 | 2000 | | MAX | 3.25 | 11.9 | 10.9 | 11.4 | 9.58 | 17.0 | 19.0 | 7.77 | 12.5 | 5.69 | 16.2 | 4.49 | | MEAN | 1.39 | 4.03 | 4.77 | 5.98 | 6.33 | 10.2 | 8.92 | 4.43 | 3.98 | 2.36 | 2.98 | 1.34 | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 0.00 | NTOTT | DEC | T 7 3 7 | | 3.43 D | 3.00 | 24277 | TIBI | 77.77 | 7.77 | | | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1951 - 1957 | |--------------------------|------------------------|---------------------|-------------------------| | | | | 2000 - 2001 | | | | | | | ANNUAL TOTAL | | 1584.96 | | | ANNUAL MEAN | | 4.34 | 4.52 | | HIGHEST ANNUAL MEAN | | | 6.57 1952 | | LOWEST ANNUAL MEAN | | | 2.36 1954 | | HIGHEST DAILY MEAN | 64 Apr 18 | 115 Mar 21 | 168 Nov 21 1952 | | LOWEST DAILY MEAN | .13 Sep 18 | .25 Jul 24 | .00 aOct 1 1954 | | ANNUAL SEVEN-DAY MINIMUM | .45 Sep 12 | .35 Jul 19 | .00 Oct 1 1954 | | MAXIMUM PEAK FLOW | | 240 Mar 21 | 298 Nov 21 1952 | | MAXIMUM PEAK STAGE | | 6.63 Mar 21 | 8.04 Nov 21 1952 | | INSTANTANEOUS LOW FLOW | | .22 bJul 17 | .00 cOct 1 1954 | | ANNUAL RUNOFF (CFSM) | | .75 | .78 | | ANNUAL RUNOFF (INCHES) | | 10.18 | 10.61 | | 10 PERCENT EXCEEDS | 9.5 | 6.6 | 9.0 | | 50 PERCENT EXCEEDS | 2.0 | 1.9 | 2.1 | | 90 PERCENT EXCEEDS | .88 | .54 | .30 | a b c e Many days in October 1954. Also July 23-26, 2001. Many days in October 1954, and Sept. 19, 2000. Estimated. # 01659000 NORTH BRANCH CHOPAWAMSIC CREEK NEAR INDEPENDENT HILL, VA--Continued # SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | |---|----------------------------|---|-------------------------------------|----------------------------|--|-------------------------------------|--|---------------------------------------|-------------------------------------| | | | OCTOBER | | | NOVEMBER | | D | ECEMBER | | | 1 | | | | | | | | | | | 2 | | | | | | | | | | | 3 | | | | | | | | | | | 4
5 | | | | | | | | | | | 5 | | | | | | | | | | | 6 | | | | | | | | | | | 7 | | | | | | | | | | | 8
9 | | | | | | | | | | | 10 | 11
12 | | | | | | | | | | | 13 | | | | | | | | | | | 14 | | | | | | | | | | | 15 | | | | | | | | | | | 16 | | | | | | | | | | | 17 | | | | | | | | | | | 18
19 | | | | | | | | | | | 20 | 21
22 | | | | | | | | | | | 23 | | | | | | | | | | | 24 | | | | | | | | | | | 25 | | | | | | | | | | | 26 | | | | | | | | | | | 27 | | | | | | | | | | | 28 | | | | | | | | | | | 29
30 | | | | | | | | | | | 31 | | | | | | | | | | | | | | | | | | • | | | | TOTAL | 0 | | 0 | 0 | | 0 | 0 | | 0 | | | | | | | | | | | | | DAY | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | | DAY | DISCHARGE | CONCEN-
TRATION
(MG/L) | DISCHARGE | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L) | DISCHARGE | DISCHARGE | CONCEN-
TRATION
(MG/L) | DISCHARGE | | DAY | DISCHARGE | CONCEN-
TRATION | DISCHARGE | DISCHARGE
(CFS) | CONCEN-
TRATION | DISCHARGE | DISCHARGE | CONCEN-
TRATION | DISCHARGE | | 1 | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
FEBRUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
MARCH | DISCHARGE
(TONS/DAY) | | 1
2 | DISCHARGE
(CFS) | CONCENTRATION (MG/L) JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCENTRATION (MG/L) MARCH | DISCHARGE
(TONS/DAY) | | 1
2
3 | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
FEBRUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
MARCH |
DISCHARGE
(TONS/DAY) | | 1
2 | DISCHARGE
(CFS) | CONCENTRATION (MG/L) JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCENTRATION (MG/L) MARCH | DISCHARGE
(TONS/DAY) | | 1
2
3
4
5 | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
MARCH | DISCHARGE
(TONS/DAY) | | 1
2
3
4
5 | DISCHARGE
(CFS) | CONCENTRATION (MG/L) JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCENTRATION (MG/L) MARCH | DISCHARGE
(TONS/DAY) | | 1
2
3
4
5 | DISCHARGE (CFS) | CONCEN-
TRATION
(MG/L)
JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCENTRATION (MG/L) MARCH | DISCHARGE
(TONS/DAY) | | 1
2
3
4
5
6
7
8 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCENTRATION (MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1
2
3
4
5 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE
(CFS) | CONCEN-
TRATION (MG/L) MARCH | DISCHARGE
(TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE
(CFS) | CONCENTRATION (MG/L) MARCH | DISCHARGE
(TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE
(CFS) | CONCENTRATION (MG/L) MARCH | DISCHARGE
(TONS/DAY) | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCEN-
TRATION
(MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCEN-
TRATION
(MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCEN-
TRATION
(MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 2.6 2.6 2.7 6.9 5.3 3.9 3.5 | CONCENTRATION (MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 2.6 2.6 2.7 6.9 5.3 3.9 3.5 35 29 12 6.8 5.2 | CONCENTRATION (MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 2.6 2.6 2.6 2.7 6.9 5.3 3.9 3.5 35 29 12 6.8 5.2 | CONCEN- TRATION (MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 2.6 2.6 2.7 6.9 5.3 3.9 3.5 35 29 12 6.8 5.2 | CONCENTRATION (MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 2.6 2.6 2.7 6.9 5.3 3.9 3.5 35 29 12 6.8 5.2 6.3 4.9 18 7.5 | CONCEN- TRATION (MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 2.6 2.6 2.7 6.9 5.3 3.9 9.3.5 35 29 12 6.8 5.2 6.3 4.9 18 7.5 4.4 | CONCENTRATION (MG/L) MARCH | DISCHARGE (TONS/DAY) | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | DISCHARGE (CFS) | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 2.6 2.6 2.7 6.9 5.3 3.9 3.5 35 29 12 6.8 5.2 6.3 4.9 18 7.5 | CONCEN- TRATION (MG/L) MARCH | DISCHARGE (TONS/DAY) | MEAN # 01659000 NORTH BRANCH CHOPAWAMSIC CREEK NEAR INDEPENDENT HILL, VA--Continued MEAN # SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 MEAN | DAY | MEAN
DISCHARGE
(CFS) | | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | | SEDIMENT
DISCHARGE
(TONS/DAY) | |---|---|---|--|--|---|---|--|---|---| | | | APRIL | | | MAY | | | JUNE | | | 1
2
3
4
5 | 2.8
3.1
4.5
8.6
7.5 | 5
6
6
7
12 | .08
.10
.12
.23 | 5.1
4.6
3.9
3.7
3.4 | 15
11
9
8
13 | .20
.14
.09
.08 | 1.8
1.9
3.4
2.0 | 3
3
4
3
7 | .01
.02
.03
.01 | | 6
7
8
9
10 | 5.9
5.5
13
35
8.4 | 11
9
24
30
13 | .26
.21
1.9
4.6
.39 | 3.1
2.7
2.4
2.1
2.1 | 8
6
7
7 | .06
.04
.04
.04 | 1.9
1.8
1.1
.75 | 5
4
5
3
4 | .02
.02
.01
.01 | | 11
12
13
14
15 | 4.8
3.7
2.6
2.4
2.5 | 9
7
9
7
6 | .18
.14
.14
.10 | 2.9
2.1
2.3
4.6
2.7 | 6
7
11
11
8 | .05
.04
.07
.14 | .41
.39
.58
.71 | 4
4
7
4
5 | .00
.00
.01
.01 | | 16
17
18
19
20 | 2.9
38
64
28
13 | 7
47
45
23
14 | .11
10
8.9
1.8
.50 | 2.1
1.9
1.7
1.6
2.0 | 7
7
4
3
4 |
.05
.04
.03
.02
.03 | 4.5
9.5
24
19
8.4 | 8
13
15
10
7 | .10
.59
1.1
.61 | | 21
22
23
24
25 | 16
16
9.7
7.2
29 | 21
18
13
14
37 | 1.2
.85
.33
.26
4.2 | 2.1
7.3
4.7
3.1
2.3 | 3
6
5
3
2 | .03
.18
.08
.04 | 5.5
6.8
5.1
3.9
2.8 | 6
7
6
6 | .09
.14
.09
.06 | | 26
27
28
29
30
31 | 20
13
9.5
7.6
6.1 | 37
14
7
7
16 | 2.1
.50
.19
.14
.25 | 2.2
2.5
2.6
3.1
2.6
2.2 | 3
4
2
3
4
4 | .03
.02
.02
.03
.03 | 2.6
4.8
34
12
7.4 | 6
8
30
7
6 | 3.5 | | TOTAL | 390.3 | | 40.20 | 91.7 | | 1.89 | 169.93 | | 7.44 | | | | | | | | | | | | | DAY | MEAN
DISCHARGE
(CFS) | TRATION | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | | | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
JULY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
AUGUST | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
EPTEMBER | DISCHARGE
(TONS/DAY) | | DAY 1 2 3 4 5 | DISCHARGE | CONCEN-
TRATION
(MG/L) | DISCHARGE
(TONS/DAY) | DISCHARGE | CONCEN-
TRATION
(MG/L) | DISCHARGE | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
EPTEMBER | DISCHARGE | | 1
2
3
4 | DISCHARGE
(CFS)
4.1
2.7
2.8
3.5 | CONCENTRATION (MG/L) JULY 4 6 7 8 | DISCHARGE
(TONS/DAY)
.06
.06
.07
.10 | DISCHARGE
(CFS) 2.2 1.3 1.2 6.8 | CONCENTRATION (MG/L) AUGUST 8 9 7 7 14 10 12 6 6 6 6 6 8 | DISCHARGE
(TONS/DAY) .13 .11 .09 .43 .22 .50 .25 .11 .11 .03 | DISCHARGE
(CFS)
S
6.7
4.7
20
12 | CONCENTRATION (MG/L) EPTEMBER 5 6 21 9 | DISCHARGE
(TONS/DAY) .08 .08 1.3 .32 | | 1
2
3
4
5
6
7
8
9 | DISCHARGE (CFS) 4.1 2.7 2.8 3.5 3.3 2.5 1.8 1.4 1.0 1.1 1.2 .95 .68 | CONCENTRATION (MG/L) JULY 4 66 7 8 7 4 4 5 6 | DISCHARGE (TONS/DAY) .06 .06 .07 .10 .09 .04 .03 .03 .03 .03 | DISCHARGE
(CFS) 2.2 1.3 1.2 6.8 3.7 7.6 9.0 2.0 1.5 | CONCENTRATION (MG/L) AUGUST 8 9 7 14 10 12 6 6 6 6 | DISCHARGE
(TONS/DAY) .13 .11 .09 .43 .22 .50 .25 .11 .11 .03 | DISCHARGE (CFS) S 6.7 4.7 20 12 5.0 2.5 2.1 1.6 1.4 | CONCENTRATION (MG/L) EPTEMBER 5 6 21 9 4 4 3 5 4 6 | DISCHARGE (TONS/DAY) .08 .08 1.3 .32 .06 .03 .02 .02 .02 .02 .02 .01 .02 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | DISCHARGE (CFS) 4.1 2.7 2.8 3.5 3.3 2.5 1.8 1.4 1.0 1.1 1.2 .95 | CONCENTRATION (MG/L) JULY 4 66 7 8 7 4 4 4 5 6 4 | DISCHARGE (TONS/DAY) .06 .06 .07 .10 .09 .04 .03 .03 .03 .03 .03 .03 .10 .02 .10 .10 | DISCHARGE (CFS) 2.2 1.3 1.2 6.8 3.7 7.6 9.0 2.0 1.5 1.4 1.7 1.4 1.6 1.7 1.5 1.5 2.4 2.1 1.2 | CONCEN-
TRATION
(MG/L) AUGUST 8 9 7 14 10 12 6 6 8 7 6 5 7 4 4 4 7 7 5 | DISCHARGE (TONS/DAY) .13 .11 .09 .43 .22 .50 .25 .11 .11 .03 .03 .02 .02 .02 .02 .02 .04 .04 .04 | DISCHARGE (CFS) S 6.7 4.7 20 12 5.0 2.5 2.1 1.6 1.4 1.1 .91 .73 .89 .58 .40 .24 .17 .13 2.1 1.5 | CONCENTRATION (MG/L) EPTEMBER 5 6 21 9 4 4 3 5 4 6 6 8 9 13 14 12 7 5 13 9 | DISCHARGE (TONS/DAY) .08 .08 1.3 .32 .06 .03 .02 .02 .02 .02 .02 .01 .00 .02 .02 .02 .02 .02 .02 .02 .02 .02 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | DISCHARGE (CFS) 4.1 2.7 2.8 3.5 3.3 2.5 1.8 1.4 1.0 1.1 1.2 .95 .68 .83 59 5.4 2.7 1.8 1.5 | CONCEN-
TRATION (MG/L) JULY 4 6 7 8 7 4 4 4 5 6 4 8 52 15 7 5 4 5 6 11 15 9 11 | DISCHARGE (TONS/DAY) .06 .06 .07 .10 .09 .04 .03 .03 .03 .03 .03 .02 .14 .33 .10 .06 .04 .11 .08 .12 .14 .09 .12 | DISCHARGE (CFS) 2.2 1.3 1.2 6.8 3.7 7.6 9.0 2.0 1.5 1.4 1.7 1.5 1.5 2.4 2.1 1.2 84 67 .57 1.7 2.2 | CONCEN-
TRATION (MG/L) AUGUST 8 9 7 14 10 12 6 6 6 8 7 6 5 7 4 4 4 7 7 5 7 9 6 3 4 4 | DISCHARGE (TONS/DAY) .13 .11 .09 .43 .22 .50 .25 .11 .11 .03 .03 .02 .02 .02 .02 .04 .04 .01 .01 .02 | DISCHARGE (CFS) S 6.7 4.7 20 12 5.0 2.5 2.1 1.6 1.4 1.1 .91 .73 .89 .58 .40 .24 .17 .13 2.1 1.5 | CONCENTRATION (MG/L) EPTEMBER 5 6 21 9 4 4 3 5 4 6 6 8 8 9 13 14 12 7 5 13 9 7 6 6 7 7 35 | DISCHARGE (TONS/DAY) .08 .08 1.3 .32 .06 .03 .02 .02 .02 .02 .02 .01 .00 .02 .02 .02 .02 .02 .02 .02 .02 .02 | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | DISCHARGE (CFS) 4.1 2.7 2.8 3.5 3.3 2.5 1.8 1.4 1.0 1.1 1.2 .95 .68 .83 59 5.4 2.7 1.8 1.5 5.7 2.5 1.5 1.1 1.2 | CONCENTRATION (MG/L) JULY 4 66 7 8 7 4 4 4 5 6 4 8 5 7 5 4 5 6 11 15 9 | DISCHARGE (TONS/DAY) .06 .06 .07 .10 .09 .04 .03 .03 .03 .03 .03 .02 .14 .33 .10 .06 .04 .11 .08 .12 .14 .09 .12 | DISCHARGE (CFS) 2.2 1.3 1.2 6.8 3.7 7.6 9.0 2.0 1.5 1.4 1.7 1.5 1.5 2.4 2.1 1.2 84 67 .57 1.7 2.2 | CONCEN-
TRATION
(MG/L) AUGUST 8 9 7 14 10 12 6 6 8 7 6 5 7 4 4 4 7 7 5 | DISCHARGE (TONS/DAY) .13 .11 .09 .43 .22 .50 .25 .11 .11 .03 .03 .02 .02 .02 .02 .04 .04 .01 .01 .02 | DISCHARGE (CFS) S 6.7 4.7 20 12 5.0 2.5 2.1 1.6 1.4 1.1 .91 .73 .89 .58 .40 .24 .17 .13 2.1 1.5 1.2 .61 .44 .29 10 | CONCENTRATION (MG/L) EPTEMBER 5 6 21 9 4 4 3 5 4 6 6 8 9 13 14 12 7 5 13 9 | DISCHARGE (TONS/DAY) .08 .08 .08 1.3 .32 .06 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 | # 01659000 NORTH BRANCH CHOPAWAMSIC CREEK NEAR INDEPENDENT HILL, VA--Continued ## SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MEAN
CONCEN-
TRATION
(MG/L) | LOAD
(TONS/
DAY) | |---|--|---|---|---|--|--|---|---|---|--|---|---| | | OCTOR | BER | NOVEMB | ER | DECEMBI | ER | JANUA | RY | FEBRUAI | RY | MARC | Н | | 1
2
3
4
5 | 4
4
4
3
4 | .01
.01
.00
.00 | 5
5
4
4
6 | | 12
12
12
12
13 | .05
.05
.05
.05 | 2
2
2
3
4 | .00
.01
.01
.01 | 19
8
7
7
16 | | 15
10
6
11
28 | .14
.09
.05
.11 | | 6
7
8
9
10 | 4
3
3
2
4 | .01
.00
.00
.00 | 3
5
6
9
13 | .01
.02
.02
.04
.08 | 13
12
12
11
11 | .06
.06
.06
.06 | 4
5
9
8
7 | .02
.02
.06
.06 | 25
19
17
17
9 | .35
.20
.15
.14 | 20
10
5
3
8 | .32
.12
.05
.03 | | 11
12
13
14
15 | 4
5
4
3
3 | .01
.01
.01
.00 | 9
6
6
8 | .03
.02
.02
.03
.03 | 11
11
15
39
34 | .06
.07
.09
.56
.52 | 9
11
8
8
7 | .05
.06
.05
.04 | 6
4
3
6
7 | .05
.03
.02
.05 | 7
7
11
7
12 | .05
.05
.18
.10 | | 16
17
18
19
20 | 3
3
5
9
8 | .00
.00
.02
.04 | 7
7
6
6
6 | .03
.03
.02
.02 | 35
126
41
9
6 | .50
7.6
.95
.11
.06 | 7
6
6
69
110 | .05
.04
.04
4.9
9.4 | 9
53
26
18
12 | .11
1.9
.44
.22
.14 | 18
10
8
11
16 | .45
.16
.09
.10 | | 21
22
23
24
25 | 8
5
4
4
4 | .03
.01
.00
.01 | 7
7
6
5
27 | .03
.03
.02
.02 | 7
6
4
4
3 | .05
.04
.03
.02 | 72
27
18
10
4 | 3.8
.51
.24
.12
.04 | 8
7
10
13
13 | .08
.07
.11
.17 | 498
91
53
26
15 | 233
10
1.9
.60
.26 | | 26
27
28
29
30
31 | 4
5
7
8
9
6 | .01
.02
.03
.03
.04 | 117
49
25
15
12 | 2.4
.49
.14
.06
.05 | 3
5
4
2
2 | .02
.03
.03
.02
.01 | 4
6
6
5
23
23 | .04
.05
.04
.04
.39 | 13
8
12
 | .20
.09
.12
 | 11
12
23
47
92
39 | .16
.14
.62
2.7
12
1.9 | | TOTA | և | 0.37 | | 3.94 | | 11.34 | | 20.61 | | 5.59 | | 266.29 | | | | | | | | | | | | | | | | DAY | MEAN
CONCEN-
TRATION
(MG/L) | LOAD
(TONS/
DAY) | | DAY | CONCEN-
TRATION | (TONS/
DAY) | CONCEN-
TRATION | (TONS/
DAY) | CONCEN-
TRATION | (TONS/
DAY) | CONCEN-
TRATION | (TONS/
DAY) | CONCEN-
TRATION
(MG/L) | (TONS/
DAY) | CONCEN-
TRATION
(MG/L)
SEPTEM | (TONS/
DAY)
BER | | DAY 1 2 3 4 5 | CONCEN-
TRATION
(MG/L) | (TONS/
DAY) | CONCEN-
TRATION
(MG/L) | (TONS/
DAY) | CONCEN-
TRATION
(MG/L) |
(TONS/DAY) | CONCEN-
TRATION
(MG/L) | (TONS/DAY) | CONCEN-
TRATION
(MG/L) | (TONS/
DAY) | CONCEN-
TRATION
(MG/L) | (TONS/
DAY)
BER | | 1
2
3
4 | CONCENTRATION (MG/L) APRI 16 7 6 8 | (TONS/DAY) IL .45 .15 .09 .11 | CONCEN-
TRATION
(MG/L)
MAY
10
14
16
14 | (TONS/DAY) .05 .07 .07 .06 .04 .02 .02 .03 | CONCEN-
TRATION
(MG/L)
JUNE
12
20
21
17 | (TONS/DAY) .13 .31 .20 .12 | CONCENTRATION (MG/L) JULY 13 21 13 8 | (TONS/DAY) .14 .38 .07 .04 | CONCENTRATION (MG/L) AUGUST 23 14 9 10 | (TONS/DAY) T .20 .08 .03 .03 .03 .03 .02 .02 .01 | CONCEN-
TRATION
(MG/L)
SEPTEM
19
16
11
8
8 | (TONS/DAY) BER .08 .05 .03 .02 .01 .01 .00 .00 | | 1
2
3
4
5
6
7
8
9 | CONCEN-
TRATION
(MG/L) APR: 16 7 6 8 8 8 4 4 5 10 | (TONS/DAY) IL .45 .15 .09 .11 .10 .05 .05 .06 .12 | CONCEN-
TRATION
(MG/L) MAY 10 14 16 14 12 6 7 9 11 | (TONS/DAY) .05 .07 .07 .06 .04 .02 .02 .03 .03 | CONCEN-
TRATION (MG/L) JUNE 12 20 21 17 19 18 18 19 17 | (TONS/DAY) .13 .31 .20 .12 .26 .17 .15 .15 | CONCEN-
TRATION (MG/L) JULY 13 21 13 8 7 8 8 17 21 | (TONS/DAY) .14 .38 .07 .04 .03 .02 .02 .10 .11 | CONCENTRATION (MG/L) AUGUS: 23 14 9 10 10 7 7 | (TONS/DAY) T .20 .08 .03 .03 .03 .03 .02 .02 .02 .01 .01 | CONCENTRATION (MG/L) SEPTEM 19 16 11 8 8 7 7 7 6 | (TONS/DAY) BER .08 .05 .03 .02 .01 .01 .00 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | CONCEN-
TRATION
(MG/L) APR: 16 7 6 8 8 8 4 4 5 10 12 28 15 10 6 | (TONS/DAY) IL .45 .15 .09 .11 .10 .05 .06 .12 .15 .73 .35 .19 .09 | CONCEN-
TRATION (MG/L) MAY 10 14 16 14 12 6 7 9 11 13 13 11 10 8 | (TONS/DAY) .05 .07 .07 .06 .04 .02 .03 .03 .03 .03 .02 .02 .02 .01 | CONCEN-
TRATION
(MG/L) JUNE 12 20 21 17 19 18 18 19 17 19 14 10 14 25 | .13 .31 .20 .12 .26 .17 .15 .10 .09 .06 .04 .13 .23 | CONCEN-
TRATION (MG/L) JULY 13 21 13 8 7 8 8 17 21 14 14 13 15 20 | (TONS/DAY) .14 .38 .07 .04 .03 .02 .02 .10 .11 .04 .03 .02 .02 .02 .00 | CONCEN-
TRATION (MG/L) AUGUS: 23 14 9 10 10 10 8 7 7 7 9 13 8 11 19 | (TONS/DAY) T .20 .08 .03 .03 .03 .03 .02 .02 .01 .01 .05 .16 .04 .08 | CONCEN-
TRATION
(MG/L)
SEPTEM
19
16
11
8
8
8
7
7
7
6
6
6 | (TONS/DAY) BER .08 .05 .03 .02 .01 .01 .00 .00 .00 .00 .00 .00 .00 .00 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | CONCEN-
TRATION
(MG/L) APR: 16 7 6 8 8 4 4 5 10 12 28 15 10 6 8 6 6 6 6 6 5 | (TONS/DAY) IL .45 .15 .09 .11 .10 .05 .06 .12 .15 .73 .35 .19 .09 .11 .09 .10 .08 | CONCEN-
TRATION (MG/L) MAY 10 14 16 16 7 9 11 13 13 11 10 8 6 | (TONS/DAY) .05 .07 .07 .06 .04 .02 .03 .03 .03 .03 .03 .02 .01 .00 .01 .02 .04 2.5 | CONCEN-
TRATION (MG/L) JUNE 12 20 21 17 19 18 18 19 17 19 14 10 14 25 17 23 21 18 20 | .13
.31
.20
.12
.26
.17
.15
.10
.09
.06
.04
.13
.23
.08 | CONCENTRATION (MG/L) JULY 13 21 13 8 7 8 8 17 21 14 14 13 15 20 12 6 8 11 6 | (TONS/DAY) .14 .38 .07 .04 .03 .02 .10 .11 .04 .03 .02 .02 .01 .01 .00 .00 .01 | CONCEN-
TRATION (MG/L) AUGUS: 23 14 9 10 10 10 8 7 7 7 9 13 8 11 19 7 7 6 6 6 4 | (TONS/DAY) T .20 .08 .03 .03 .03 .02 .02 .01 .01 .05 .16 .04 .08 .29 .03 .02 .01 .01 .05 .06 .00 .09 .00 .00 .00 .00 .00 .00 .00 .00 | CONCEN-
TRATION
(MG/L)
SEPTEM
19
16
11
8
8
8
7
7
7
6
6
6
6
6
6
6
6
6
5
4 | (TONS/DAY) BER .08 .05 .03 .02 .01 .01 .00 .00 .00 .00 .00 .00 .00 .00 | | 1
2
3
4
5
6
7
8
9
10
11
122
13
14
15
16
17
18
19
20
21
22
23
24 | CONCEN-
TRATION
(MG/L) APR: 16 7 6 8 8 4 4 5 10 12 28 15 10 6 8 6 6 6 6 7 8 | (TONS/DAY) IL .45 .15 .09 .11 .10 .05 .06 .12 .15 .73 .35 .19 .09 .11 .09 .01 .08 .05 .08 .07 .06 .06 .06 .06 | CONCEN-
TRATION (MG/L) MAY 10 14 16 16 7 9 11 13 13 11 10 8 6 6 12 18 84 31 14 136 96 | (TONS/DAY) .05 .07 .07 .06 .04 .02 .03 .03 .03 .03 .03 .02 .01 .00 .01 .02 .04 2.5 .43 .13 40 36 .21 | CONCEN-
TRATION (MG/L) JUNE 12 20 21 17 19 18 18 19 17 19 14 10 14 25 17 23 21 18 20 23 24 39 226 32 | .13 .31 .20 .12 .26 .17 .15 .10 .09 .06 .04 .13 .23 .08 .19 .18 .07 .07 .07 .07 | CONCENTRATION (MG/L) JULY 13 21 13 8 7 8 8 17 21 14 14 13 15 20 12 6 8 11 6 6 8 10 8 8 | (TONS/DAY) .14 .38 .07 .04 .03 .02 .10 .11 .04 .03 .02 .02 .01 .00 .00 .00 .00 .00 .00 .00 .00 | CONCEN-
TRATION (MG/L) AUGUS: 23 14 9 10 10 10 8 7 7 7 9 13 8 11 19 7 7 6 6 6 4 6 8 13 12 12 | (TONS/DAY) T .20 .08 .03 .03 .03 .02 .02 .01 .01 .05 .16 .04 .08 .29 .03 .02 .01 .01 .00 .01 .01 .00 .01 | CONCENTRATION (MG/L) SEPTEM 19 16 111 8 8 7 7 7 6 6 6 6 6 10 8 14 10 8 12 16 | (TONS/DAY) BER .08 .05 .03 .02 .01 .01 .00 .00 .00 .00 .00 .00 .00 .00 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
29
30
20
20
20
20
20
20
20
20
20
20
20
20
20 | CONCEN-
TRATION
(MG/L) APR: 16 7 6 8 8 4 4 4 5 10 12 28 15 10 6 8 8 6 6 6 7 8 8 8 9 10 11 10 9 | (TONS/DAY) IL .45 .15 .09 .11 .10 .05 .06 .12 .15 .73 .35 .19 .09 .11 .09 .11 .09 .10 .08 .05 .06 .06 .05 .06 .06 .05 .06 .07 .07 .07 .05 .05 | CONCENTRATION (MG/L) MAY 10 14 16 7 9 11 13 13 11 10 8 6 6 12 18 84 31 14 136 96 96 926 85 34 13 10 6 | (TONS/DAY) .05 .07 .07 .06 .04 .02 .03 .03 .03 .03 .02 .02 .01 .00 .01 .02 .04 2.5 .43 .13 40 36 .11 .59 | CONCEN-
TRATION (MG/L) JUNE 12 20 21 17 19 18 18 19 17 19 14 10 14 25 17 23 21 18 20 23 24 39 226 32 21 19 15 14 11 10 10 | (TONS/DAY) .13 .31 .20 .12 .26 .17 .15 .15 .10 .09 .06 .04 .13 .23 .08 .19 .18 .08 .07 .07 .27 69 .81 .20 .10 .08 .05 .04 .04 | CONCENTRATION (MG/L) JULY 13 21 13 8 7 8 8 17 21 14 14 13 15 6 6 8 10 8 8 10 8 9 86 67 18 40 27 | (TONS/DAY) .14 .38 .07 .04 .03 .02 .02 .10 .01 .04 .03 .02 .02 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 | CONCENTRATION (MG/L) AUGUS: 23 14 9 10 10 10 8 7 7 7 7 6 6 6 4 6 8 13 12 12 13 11 6 8 19 | (TONS/DAY) T .20 .08 .03 .03 .03 .02 .01 .01 .05 .16 .04 .08 .29 .03 .02 .01 .01 .01 .01 .02 .02 .02 .01 .01 .01 .00 .01 .01 .02 .02 .02 .02 .01 .01 .00 .00 .00 .00 .00 .00 .00 .00 | CONCENTRATION (MG/L) SEPTEM 19 16 11 8 8 7 7 7 6 6 6 6 6 6 6 6 10 8 14 10 8 12 16 10 8 11 11 11 | (TONS/DAY) BER .08 .05 .03 .02 .01 .01 .00 .00 .00 .00 .00 .00 .00 .00 | # 01659000 NORTH BRANCH CHOPAWAMSIC CREEK NEAR INDEPENDENT HILL, VA--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--January 2000 to current year. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | SAMP
TYP | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | |------------------|--|--|--|--|---|--|---|---|---|---|---|--|--| | OCT
18 | 1000 | ENVIRONM | ENTAL | 15.1 | 17.0 | 755 | .99 | 50 | 6.2 | 93 | 6.4 | <.041 | <.006 | | NOV
06
DEC | 1000 | ENVIRONM | ENTAL | 7.8 | 7.5 | 756 | 1.1 | 54 | 9.7 | 81 | 6.9 | <.041 | <.006 | | 19
JAN | 1030 | ENVIRONM | ENTAL | 2.5 | 3.0 | 751 | 4.4 | 50 | 11.1 | 82 | 6.7 | <.041 | <.006 | | 25
FEB | 0945 | ENVIRONM | ENTAL | .5 | -1.0 | 755 | 3.8 | 46 | 14.1 | 99 | 7.0 | <.041 | <.006 | | 13
MAR | 0830 | ENVIRONM | ENTAL | 3.3 | 3.5 | 762 | 3.2 | 49 | 14.3 | 89 | 7.1 | <.041 | <.006 | | 14
30
30 | 0830
1130
1130 | ENVIRONM
REPLICAT
ENVIRONM | Έ | 7.4
7.2
7.2 | 4.5
14.5
14.5 | 747
745
745 | 5.3
76
76 | 52
36
36 | 11.2
10
10 | 95
90
90 | 7.2
6.6
6.6 | <.041
<.041
<.041 | <.006
<.006
<.006 | | 19 | 0945 | ENVIRONM | ENTAL | 8.4 | 10.5 | 758 | 4.0 | 51 | 11.1 | 100 | 6.9 | <.041 | E.003 | | 16
JUN | 0815 | ENVIRONM | ENTAL | 12.9 | 17.5 | 750 | .56 | 55 | 10.1 | 95 | 7.1 | <.041 | <.006 | | 12
JUL | 0900 | ENVIRONM | ENTAL | 20.6 | 27.0 | 749 | 1.5 | 53 | 8.1 | 99 | 6.8 | .117 | .025 | | 16
AUG | 0900 | ENVIRONM | ENTAL | 18.9 | 21.5 | 752 | .39 | 52 | 8.3 | 88 | 6.5 | <.040 | E.003 | | 15
SEP | 0900 |
ENVIRONM | | 21.4 | 24.5 | 753 | 2.0 | 48 | 5.8 | 68 | 6.5 | E.024 | <.006 | | 11 | 1000 | ENVIRONM | ENTAL | 19.0 | 20.0 | 758 | .50 | 54 | 8.0 | 90 | 7.2 | <.040 | <.006 | | | | | | | | | | | | | | | | | | DATE | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | DATA
BASE
NUMBER | | | | OCT
18 | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS DIS- SOLVED (MG/L AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | MENT,
SUS-
PENDED
(MG/L) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | MTEC MF
WATER
(COL/
100 ML) | BASE | | | | OCT
18
NOV
06 | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | MENT,
SUS-
PENDED
(MG/L)
(80154) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | MTEC MF
WATER
(COL/
100 ML)
(31633) | BASE
NUMBER | | | | OCT
18
NOV
06
DEC
19 | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | MENT,
SUS-
PENDED
(MG/L)
(80154) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | MTEC MF
WATER
(COL/
100 ML)
(31633) | BASE
NUMBER | | | | OCT
18
NOV
06
DEC
19
JAN
25 | GEN,AM-
MONIA +
ORGANIC
DIS:
(MG/L
AS N)
(00623) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.018 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
E.003 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.018 | MENT,
SUS-
PENDED
(MG/L)
(80154) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | MTEC MF
WATER
(COL/
100 ML)
(31633) | BASE
NUMBER
01 | | | | OCT
18
NOV
06
DEC
19
JAN | GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .12 .10 .27 | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 <.047 E.031 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.018
.019 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
E.003 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.018
<.018 | MENT,
SUS-
PENDED
(MG/L)
(80154) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625)
110
E18k | MTEC MF
WATER
(COL/
100 ML)
(31633)
20
29 | BASE
NUMBER
01
01 | | | | OCT 18 NOV 06 DEC 19 JAN 25 FEB 13 MAR 14 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .12 .10 .27 .15 E.06 .15 | GEN, AM- MONIA + MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .25 .13 .25 .17 <.08 | GEN, NO2+NO3 DIS-SOLVED (MG/L AS N) (00631) <.047 <.047 <.047 <.047 <.047 <.047 <.047 | PHORUS TOTAL (MG/L AS P) (00665) .018 .019 .019 .015 .013 | PHORUS DIS- SOLVED (MG/L AS P) (00666) E.003 .006 .009 .009 .006 E.005 | PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.018 <.018 <.018 <.018 <.018 <.018 <.018 | MENT,
SUS-
PENDED
(MG/L)
(80154)
3
2
6
3 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
.01
.01
.07 | FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) | MTEC MF
WATER
(COL/
100 ML)
(31633)
20
29
 | BASE NUMBER 01 01 01 01 01 01 | | | | OCT 18 NOV 06 DEC 19 JAN 25 FEB 13 MAR 14 30 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .12 .10 .27 .15 E.06 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .25 .13 .25 .17 <.08 | GEN, NO2+NO3 DIS-SOLVED (MG/L AS N) (00631) < .047 < .047 < .047 < .047 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.018
.019
.019
.015 | PHORUS DIS- SOLVED (MG/L AS P) (00666) E.003 .006 .009 .009 | PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.018 <.018 <.018 <.018 <.018 | MENT,
SUS-
PENDED
(MG/L)
(80154)
3
2
6
3
3
5 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
.01
.01
.07
.03
.02 | FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 110 E18k | MTEC MF
WATER
(COL/
100 ML)
(31633)
20
29

 | BASE NUMBER 01 01 01 01 01 | | | | OCT 18 NOV 06 DEC 19 JAN 25 FEB 13 MAR 14 30 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .12 .10 .27 .15 E.06 .15 .30 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .25 .13 .25 .17 <.08 .23 .47 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 <.047 E.031 <.047 <.047 <.047 | PHORUS TOTAL (MG/L AS P) (00665) .018 .019 .019 .015 .013 | PHORUS DIS- SOLVED (MG/L AS P) (00666) E.003 .006 .009 .009 .006 E.005 .009 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.018
<.018
<.018
<.018
<.018
<.018
<.018 | MENT,
SUS-
PENDED
(MG/L)
(80154)
3
2
6
3
3 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
.01
.01
.07
.03
.02 | FORM, FECAL, 0.7 UM-MF (COLS./100 ML) (31625) 110 E18k | MTEC MF
WATER
(COL/
100 ML)
(31633)
20
29

 | BASE NUMBER 01 01 01 01 01 01 01 | | | | OCT
18
NOV
06
DEC
19
JAN
25
FEB
13
MAR
14
30
30 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .12 .10 .27 .15 E.06 .15 .30 .30 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .25 .13 .25 .17 <.08 .23 .47 .46 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 <.047 E.031 <.047 <.047 <.047 E.031 | PHORUS TOTAL (MG/L AS P) (00665) .018 .019 .019 .015 .013 .018 .054 .055 | PHORUS DIS- SOLVED (MG/L AS P) (00666) E.003 .006 .009 .009 .006 E.005 .009 | PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 | MENT,
SUS-
PENDED
(MG/L)
(80154)
3
2
6
3
5

94 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
.01
.01
.07
.03
.02
.07 | FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 110 E18k | MTEC MF
WATER
(COL/
100 ML)
(31633)
20
29

 | BASE NUMBER 01 01 01 01 01 01 01 01 01 | | | | OCT 18 NOV 06 DEC 19 JAN 25 FEB 13 MAR 14 30 APR 19 MAY 16 JUN 12 JUL | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .12 .10 .27 .15 E.06 .15 .30 .30 .17 .11 .30 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .25 .13 .25 .17 <.08 .23 .47 .46 .21 .23 .33 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 <.047 <.047 <.047 <.047 <.047 <.047 <.047 <.047 <.047 .050 E.047 <.047 <.050 E.047 | PHORUS TOTAL (MG/L AS P) (00665) .018 .019 .019 .015 .013 .018 .054 .055 .017 .021 | PHORUS DIS- SOLVED (MG/L AS P) (00666) E.003 .006 .009 .009 .006 E.005 .009 .008 .006 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 | MENT, SUS-
PENDED (MG/L) (80154) 3 2 6 3 3 5 94 4 5 8 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
.01
.01
.07
.03
.02
.07

19 | FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 110 E18k | MTEC MF WATER (COL/ 100 ML) (31633) 20 29 | BASE NUMBER 01 01 01 01 01 01 01 01 01 01 01 01 | | | | OCT 18 NOV 06 DEC 19 JAN 25 FEB 13 MAR 14 30 APR 19 MAY 16 JUN 12 JUL 16 AUG | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .12 .10 .27 .15 E.06 .15 .30 .30 .17 .11 .30 E.08 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .25 .13 .25 .17 <.08 .23 .47 .46 .21 .23 .33 .34 | GEN, NO2+NO3 DIS-SOLVED (MG/L AS N) (00631) <.047 <.047 <.047 <.047 <.047 <.047 <.047 <.047 <.050 E.047 <.050 E.047 | PHORUS TOTAL (MG/L AS P) (00665) .018 .019 .019 .015 .013 .018 .054 .055 .017 .021 .043 .019 | PHORUS DIS- SOLVED (MG/L AS P) (00666) E.003 .006 .009 .009 .006 E.005 .009 .008 .006 .007 .007 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.0100 <.0100 <.0000 <.0000 <.0000 <.0000 <.0000 | MENT,
SUS-
PENDED
(MG/L)
(80154)
3
2
6
3
3
5

94
4
5
8 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
.01
.07
.03
.02
.07

19
.04
.01 | FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 110 E18k | MTEC MF WATER (COL/ 100 ML) (31633) 20 29 | BASE NUMBER 01 01 01 01 01
01 01 01 01 01 01 01 | | | | OCT
18
NOV
06
DEC
19
JAN
25
FEB
13
MAR
14
30
30
APR
19
MAY
16
JUN
12
JUN
16 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .12 .10 .27 .15 E.06 .15 .30 .30 .17 .11 .30 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .25 .13 .25 .17 <.08 .23 .47 .46 .21 .23 .33 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 <.047 <.047 <.047 <.047 <.047 <.047 <.047 <.047 <.047 .050 E.047 <.047 <.050 E.047 | PHORUS TOTAL (MG/L AS P) (00665) .018 .019 .019 .015 .013 .018 .054 .055 .017 .021 | PHORUS DIS- SOLVED (MG/L AS P) (00666) E.003 .006 .009 .009 .006 E.005 .009 .008 .006 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 | MENT, SUS-
PENDED (MG/L) (80154) 3 2 6 3 3 5 94 4 5 8 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
.01
.01
.07
.03
.02
.07

19 | FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 110 E18k | MTEC MF WATER (COL/ 100 ML) (31633) 20 29 | BASE NUMBER 01 01 01 01 01 01 01 01 01 01 01 01 | | Remark codes used in this report: < -- Less than E -- Estimated value Value qualifier codes used in this report: \ensuremath{k} -- Counts outside acceptable range